
Malicious Code Protector

 2004 Check Point Software Technologies Ltd. 1

A New Approach for Detecting and Blocking Buffer Overflow Attacks

In This Document

Introduction ………………………………………………………………………………………… 2

Buffer Overflow Attacks …………………………………………………………………………… 3

Current Defenses Against Buffer Overflow Attacks ……………………………………………… 3

A New Approach: Malicious Code Protector …………………………………………………… 4

The Algorithm ……………………………………………………………………………………… 5

A Technical Evolution ……………………………………………………………………………… 6

Advantages Over Existing Solutions ……………………………………………………………… 7

Malicious Code Protector and Check Point Products …………………………………………… 7

Conclusion ………………………………………………………………………………………… 8

Glossary ……………………………………………………………………………………………… 8

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 2

Introduction
Attacks using buffer overflow vulnerabilities have become one of the greatest security concerns
on the Internet, with buffer overflows sited in over 50% of the most recent CERT advisories. In
fact, the first 6 advisories of 2003 are directly related to buffer overflow vulnerabilities. The shear
power of these attacks and the large number of hosts that are vulnerable make it a popular attack
vector. Some of the largest attacks in the past several years can be linked to buffer overflow
vulnerabilities:

Malicious Attack Year Economic Damage1 Buffer Overflow Vulnerability

Sasser 2004 $3.5 Billion Microsoft Local Security Authority
Subsystem Service (MS04-011)

SQL Slammer 2003 $1 Billion Microsoft SQL Server and MSDE 2000
(MS02-061)

MS Blaster 2003 $750 Million Microsoft RPC- Remote Procedure Call
(MS03-039)

Code Red 2001 $2.6 Billion Microsoft IIS Server: Internet Server
Application Program Interface (MS01-033)

Buffer overflow attacks, sometimes referred to as malicious code attacks or stack attacks, are
popular for two fundamental reasons: they ultimately let an attacker do whatever they want to do
on a target host; and most application programs are vulnerable to this attack. Hackers can use this
exploit to modify files, launch applications, or even inject executable code of their own. A worm
is a good example of the later case, using the buffer overflow as an entry point for the worm. This
translates into an attack that can spread across the Internet in hours, seen in these two examples:
250,000 hosts were hit with the Code Red worm within 9 hours2; and even more dramatically the
Witty worm was able to hit 110 hosts in the first 10 seconds of the attack3. Given the scope of the
problem, buffer overflow attacks will continue to be an issue for the foreseeable future.

While attack countermeasures have been developed to identify a buffer overflow attack after it has
emerged, current solutions are unable to identify new attacks or variations on the attack. This is a
critical problem given the spread at which these attacks can spread. To solve this problem Check
Point developed Malicious Code Protector, a patent-pending technology that provides a new
approach for detecting and blocking buffer overflow attacks. Unlike previous detection solutions
that rely on a defined attack signature, Malicious Code Protector uses a fundamentally different
detection method with the capability of detecting previously unknown attacks and variations on
existing attacks.

1 Computer Economics, “The Impact of Malicious Code,” June 2004

2 CERT/CC, ‘CERT® Advisory CA-2001-23 Continued Threat of the “Code Red” Worm’, January 17, 2002, URL: http://www.
cert.org/advisories/CA-2001-23.html.

3 Colleen Shannon and David Moore, “The Spread of the Witty Worm”, Cooperative Association for Internet Data Analysis,
URL: http://www.caida.org/analysis/security/witty/

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 3

Buffer Overflow Attacks
Buffer overflow attacks target the way host machines handle input data and memory space. When
an application is running on a host machine it allocates a certain portion of memory (the buffer)
for input data to be placed. The problem arises, because while the buffer used by the application
is a fixed size, the application itself may not restrict the amount of data that can be input into the
buffer. For example, a programmer may expect data to be less than 26 bytes and will allocate
the appropriate amount of memory. However, a user may input 27 bytes of data. The result is the
application writes more data than is allocated in the buffer (the overflow) and corrupts the memory.

Why is this important? This innocent programming oversight can provide an attacker with the
ability to break out of the context of the running application and execute an attacker’s malicious
code inserted with the attack. To take advantage of this ability (vulnerability) to overflow a buffer,
an attacker writes an attack such that it is both larger than the buffer of a particular application and
whose payload contains some executable code in machine assembly language (see glossary).
The attacker also cleverly includes memory pointers, or addresses in memory that redirect the
flow of a running application. The result is an application that takes input data, overruns its buffer,
encounters a memory pointer that points back to the malicious executable code contained in the
payload of the attack, and then, via the host, begins to run the malicious code.

There are two qualities that make this attack attractive to hackers. First, the attack can apply to
any application that takes input data. From a network perspective, this can include Web servers
(HTTP), DNS servers, FTP servers, networked Microsoft applications, etc. Second, given that
as part of the attack the host begins to run the attackers malicious code, an attacker can create
malicious code to do whatever it wants. This includes such things as executing remote shell
commands (command line), opening backdoors for further attacks, running a worm, or installing a
trojan horse.

For example, a buffer overflow vulnerability found in Microsoft IIS Servers allowed an attacker to
write malicious code that ultimately gave full control over these servers. This is now commonly
known as the Code Red attack. While the first Code Red merely used the target host to attack
www.whitehouse.gov. Code Red II was more serious, because it installed a trojan horse on the
hosts. Using the same vulnerability and malicious code, two very serious and different attacks
were created.

Current Defenses Against Buffer Overflow Attacks
In an ideal world applications would not accept more data than is actually allocated in the buffer
and no host system would allow an application to write past a buffer in its memory. However,
there are thousands of applications in the world that don’t validate input data and millions of
hosts that run these applications. The sheer size of the problem makes it impractical to go back
to each and every application, as well as each place within an application that accepts user input,
and implement validation checking. To solve this dilemma, organizations are turning to network-
based solutions as a one-stop solution to prevent the injection of buffer overflow attacks into an
organization’s network.

IDS/IPS Solutions

Intrusion Detection Systems (IDS) are designed to detect application-level attacks by examining
data for known patterns (signatures) or anomalies that may indicate the existence of an attack in a
stream of data.

IDS are traditionally used to fine-tune a security policy and defenses after a security incident
has occurred, but do not offer proactive protection. This is critical given that an attack can be
contained in a single packet. The SQL Slammer worm, for example, was a small 276 byte worm
that did its damage in a single packet. The advantage of an Intrusion Detection System is the
low probability of false alarms since the search criteria of signatures can be tightly defined. The

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 4

disadvantages are also obvious, new attacks are frequently missed – and only take a slight
modification to the attack to make the Intrusion Detection System ineffective. The Code Red II
variant, for example, differed by only 13 bytes from the original and was able to infect hosts 3 times
faster than the original4.

While some Intrusion Detection Systems claim to look for machine code, they do not have
the capability to examine machine assembly code or the Virtual Server analysis used by MCP
to provide accurate, speedy attack detection. In reality, IDS systems do not look at machine
assembly instructions but rather look for a specific string of binary numbers that may infer that
assembly instructions exist. This inference of machine assembly code rather than actual assembly
code analysis is a fundamental reason why IDS systems cannot detect new attacks and have low
detection rates for variations of existing attacks.

Intrusion Protection Systems (IPS) actively block perceived threats to a network, based on
common signatures. However, similar to Intrusion Detection Systems, Intrusion Protection
Systems are heavily signature-based and as such, fail to proactively thwart previously
unknown threats.

A New Approach: Malicious Code Protector
Malicious Code Protector is a patent-pending technology from Check Point designed to detect
malicious code attacks targeting applications with buffer overflow vulnerabilities. It is designed
to recognize attacks without requiring a signature of a known attack or variations of an attack.
The following section describes the goals of Malicious Code Protector, assumptions that help it
accurately detect attacks, and how it detects actual malicious code.

Design Goals

Malicious Code Protector was designed with the following core goals:

1. Ability to detect unknown attacks. The goal of Malicious Code Protector is to detect an
actual attack rather than a signature of an attack. By definition, attack signatures cannot
anticipate or be “pre-created” for a new attack. However, the coding of executables in
network-based buffer overflow attacks all share common, unique characteristics that
can be identified and characterized more efficiently with an actual examination of the
executable code itself.

2. Protocol independence. Malicious Code Protector was designed to integrate with the
Check Point Application Intelligence framework, which supports dozens of protocols. As
recent attacks have shown, even long standing protocols such as MS-RPC and SQL can
be exploited with new attacks.

3. Fast. The goal was to design a solution that can work at wire speed. This means it should
run on standard Pentium hardware supporting traffic rates of at least 1 Gigabit per second,
to accommodate the needs of most enterprises.

4. Multiple platform compatibility. The Malicious Code Protector was designed to support
multiple server platforms. While the current solution currently protects Windows and
Intel platforms (>90% servers on the Internet), it can be extended to support additional
platforms such as Sun Microsystems SPARC based systems.

4 Baca, Jeremy, “Windows Remote Buffer Overflow Vulnerability and the Code Red Worm,” SANS Institute, 2001.

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 5

Design Assumptions

As discussed earlier, buffer overflows attack the memory system of a target host using specially
crafted malicious code. All buffer overflow attacks send executable code in the network payload
of an attack. Buffer overflow attacks must contain code that will be run on the target computer;
otherwise they can not perform any hostile actions.

Based on the above, the following assumptions were made:

1. All network-based malicious overflow attacks must contain executable code in machine
language.

2. Network traffic does not usually contain executable machine code. In the rare cases where
a legitimate executable code is transferred over the network (e.g. download of an .exe file),
it can be easily identified as such. Typically, EXE files are sent from servers to clients, while
attacks are launched from clients to servers.

3. It is possible to write an algorithm to detect machine code in network traffic with high
accuracy, low false positives rates and high performance.

Based on the assumptions above, Check Point created an algorithm that meets the design goals
of the Malicious Code Protector. Since Malicious Code Protector can detect machine code in
network traffic, and we know that each attack must have machine code from our assumptions,
the algorithm can detect actual attacks regardless of the specific buffer overflow vulnerabilities an
attack is exploiting.

The Algorithm

Looking for Executable Code

The heart of the Malicious Code Protector is a disassembler engine that can examine network
traffic and detect executable code (i.e., disassemble binary data into machine assembly
language). This ability to detect executable code is related to the assumption that executable
code is normally not allowed to traverse a network, with the exception of a few well known cases,
such as an FTP transfer of an executable (*.exe) file. Malicious Code Protector monitors data
streams and looks for a sequence of data that the disassembler engine can translate into machine
assembly language. This indicates the possible existence of executable code passing through a
network.

However, this alone is not sufficient when trying to determine whether a certain data stream
contains executable code, let alone code of malicious nature. There are instances where non-
executable data can generate an assembly-looking output. For example, a .gif file can in some
cases produce machine assembly instructions even though it is not an application. Therefore, the
Malicious Code Protector must be able to distinguish between the random “noise” of assembly-
like data and a real executable in network traffic.

Pass Pass

NO NO

Virtual Server
Simulator

Executable Code?
(dissassembler)

Malicious Code? Block/LogUser Input
YES YES

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 6

Virtual Server: Determining Malicious Intent

To determine whether a suspected block of data is actually executable code, Malicious Code
Protector examines the sequence of assembly instructions (i.e., Op Codes) to look for a logical
relationship between the instructions and the expected use of these instructions. Given the greater
context of the assembly instructions, and the existence of larger “meta-instructions”, Malicious
Code Protector determines the likelihood that a given set of assembly instructions is in fact
executable code.

Yet, the mere existence of executable code does not necessarily count for its malicious nature.
The final Malicious Code Protector step is to examine the set of assembly instructions to look for
particular meta-instruction sets. As mentioned earlier in the description of buffer overflow attacks,
hackers use certain programming techniques within their malicious code to get the target to
actually run the malicious code. They typically contain a similar set of instructions to work around
uncertainties pertaining to the size and location of a buffer. Malicious Code Protector looks for
such instructions to identify a malicious application. It then feeds the instructions into a Virtual
Server to analyze its reaction to the instructions. This virtualized environment is a fundamental
reason Malicious Code Protector is able to detect malicious code. Finally, the MCP analyzes the
results of all of these steps to determine whether a certain data stream is in fact a malicious code.

A Technical Evolution
Disassembly technology has been around for quite a while, but has not been used for network-
based attack detection due to accuracy and performance challenges. However, these limitations
are overcome by integrating disassembly technology with Check Point Stateful Inspection and
Application Intelligence technologies. This combination increases accuracy through a much
deeper understanding of the application flow. In addition, performance is greatly increased by
applying the disassembly only where it is possible to inject a malicious attack into network traffic.

Accuracy

Accuracy is a major issue in machine learning methodologies, with the inevitable tradeoff between
detection rates and false positive rates; the problem lies within the ability to achieve both at the
same time.

Using ONLY a Disassembler to identify malicious code could yield high detection rates, but would
also cause high false positive rates. To prevent this, Malicious Code Protector uses a second layer
of disassembly which turns machine assembly code into logical programming elements such
as loops and branches. Since the logical constructs are higher in this approach, the likelihood of
random constructs spontaneously appearing is lower, resulting in much lower false positive rates.
By achieving a higher level of understanding of what the executable code is attempting to do,
malicious intents can be better identified.

To improve the accuracy detection rates, Malicious Code Protector looks for logical constructs
used by hackers in buffer overflows. Since all buffer overflows are limited in size and share many
limitations inherent in these network-based attacks, it is possible to identify repeating constructs,
such as decryption loops, which are indicative of malicious code.

After running several sets of detectors, Malicious Code Protector uses machine learning
techniques to combine the weights achieved by each flow of the algorithm. The combination of
weights increases accuracy by ruling out exceptions and looking at common context.

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 7

Performance

Disassembly of bytes into machine assembly language is a computer-intensive operation.
Interactive Disassembly, which can follow code branches, requires even more computing
resources. To overcome these performance issues and operate at wire speed, Malicious Code
Protector implements several performance enhancing techniques. Performance considerations
include:

1. Performance is greatly increased by applying the algorithm only in places where malicious
code can be inserted. For example, in the context of Web communication between a
client and a Web server, there are only a few places where a server will be looking for user
input (URLs, forms, etc.). These are the only places where a server will act on the input
and is where hackers place malicious code. Understanding the context of application
communication with Application Intelligence, Malicious Code Protector can run faster and
with a much better accuracy rate.

2. Malicious Code Protector is stream based, and can work on a single byte at a time. This
allows it to be used in high performance environments where packets are forwarded rather
than stored.

3. Malicious Code Protector implements specific optimization techniques, including caching,
hashing and information sharing in order to avoid repetitive operation calculations. This is
especially useful with servers, since requests tend to repeat themselves (e.g. server name).

Advantages Over Existing Solutions
When compared to network based systems that use signatures of attacks (IDS/IPS), Malicious
Code Protector delivers two fundamental advantages:

1. Pre-Emptive. Without having to rely on signatures created from analysis of a known attack,
Malicious Code Protector eliminates the time lag between when an attack emerges and when a
signature is defined and published in the market. Through its analysis of the machine assembly
language in a Virtual Server environment, Malicious Code Protector can detect new attacks that
seek to exploit buffer overflow vulnerabilities. This provides attack protection from “Day 0”.

2. Accurate. By looking at actual machine assembly language and its behavior in a Virtual Server
environment, Malicious Code Protector can detect variations on attacks that typically follow an
outbreak of malicious code (e.g., Code Red II followed 7 days behind the original attack). The
binary “signature” of an attack variant can differ enough from the existing signature that it will
no longer match the variant, even if the attack itself is still exploiting the same buffer overflow
vulnerability. Malicious Code Protector overcomes this deficiency by examining the actions of
the malicious code rather than a binary string that could represent it.

Malicious Code Protector and Check Point Products
As discussed in the design goals section of this document, Malicious Code Protector was
designed to be protocol independent. It can be run against any type of network traffic to look for
malicious code designed to exploit buffer overflow vulnerabilities in target hosts. The first release
of Malicious Code Protector is with Web Intelligence and is used to inspect Web (HTTP) traffic.
Integrated with Web Intelligence, Malicious Code protector is used to inspect Web traffic that has
the potential to carry user input to a Web server (URLs, forms within Web pages, etc.).

Web Intelligence is integrated in the following products:

• VPN-1 NG with Application Intelligence, R55W or higher: Web Intelligence protects Web
applications behind a VPN-1 gateway.

• Connectra: Web Intelligence protects Web servers being accessed through the Connectra
gateway, as well as protecting Connectra itself.

5 http://www.caida.org/analysis/security/code-red/

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 8

Step Description View of Datastream

1 This is an example of a data
stream containing an embedded
malicious code attack (malicious
code is in blue)

...ff 73 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d
0a 48 6f 73 74 3a 20 6f 6f 6f 6f 6f 6f 6f 6f 6f 6f 6f 6f
42 42 42 42 8b 89 e8 77 eb 15 5b 53 68 aa 01 78 58
ff d0 31 c9 b1 11 58 e2 fd 31 c0 48 c3 e8 e6 ff ff ff
73 74 61 72 74 20 63 61 6c 63 2e 65 78 65 00 0d 0a
43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 63 6c 6f 73 65
0d 0a 0d 0a 0d 0a...

2 With an understanding of the
HTTP Web protocol, Web
Intelligence recognizes this stream
as an HTTP GET with user input
data, a likely place a hacker would
put a malicious code attack.

GET / HTTP/1.1

Host: ooooooooooooBBBBïë_w_ [Sh¡¬ xX _1__
X__1_H__µ start calc.exe Connection: close

3 Determining that this is a
possible point of attack, the
disassember engine of Malicious
Code Protector examines the
datastream to look for the
existence of machine assembly
code. In any datastream some
data will randomly translate as
assembly code. However, in
this case a string of assembly
code indicates the existence of
executable code.

JMP+26, CALL-26, POP EBX, PUSH EBX, PUSH
0x7801AAAD, POP EAX, CALL EAX

4 In the last step, Malicious Code
Protector runs the executable
code in a Virtual Server
environment. Based on an analysis
of the behavior of the executable
code, it can be determined that an
executable is attempting to exploit
a buffer overflow vulnerability and
is malicious.

Pass

NO

Virtual Server
Simulator

Behavior
Analysis Block/Log

YES

Table 1: Step-by-step description of how Web Intelligence uses Malicious Code Protector to inspect
Web traffic:

Conclusion
Attacks exploiting buffer overflow vulnerabilities in applications have developed into considerable
security issues, causing billions of dollars in damage. Given the thousands of applications that
contain these vulnerabilities, and with more vulnerabilities being discovered every day, the
problem is likely to remain an issue for years to come. Today, a window of vulnerability exists
between when an attack emerges and when an attack signature can be written and distributed.
Given that worms containing malicious code can infect thousands of hosts a minute, this critical
delay in protection is costly. Malicious Code Protector is a new approach to protecting against
buffer overflow attacks. With its ability to examine actual executable code and run it through
a Virtual Server environment, Malicious Code Protector delivers the “Day 0” protection that is
critically needed to minimize the damage to emerging attacks on the Internet.

Malicious Code Protector: A New Approach for Detecting and Blocking Buffer Overflow Attacks

 2004 Check Point Software Technologies Ltd. 9

CHECK POINT OFFICES:

Worldwide Headquarters:
3A Jabotinsky Street, 24th Floor
Ramat Gan 52520, Israel
Tel: 972-3-753 4555
Fax: 972-3-575 9256
e-mail: info@CheckPoint.com

U.S. Headquarters:
800 Bridge Parkway
Redwood City, CA 94065
Tel: 800-429-4391 ; 650-628-2000
Fax: 650-654-4233
URL: http://www.checkpoint.com

© 2004 Check Point Software Technologies Ltd. All rights reserved. Check Point, Application Intelligence, Check Point Express, the Check
Point logo, ClusterXL, ConnectControl, Connectra, CoSa, Cooperative Security Alliance, FireWall-1, FireWall-1 GX, FireWall-1 SecureServer,
FloodGate-1, Hacker ID, INSPECT, INSPECT XL, InterSpect, IQ Engine, Open Security Extension, OPSEC, Provider-1, Safe@Home,
Safe@Office, SecureClient, SecureKnowledge, SecurePlatform, SecurRemote, SecurServer, SecureUpdate, SecureXL, SiteManager-1,
SmartCenter, SmartCenter Pro, SmartDashboard, SmartDefense, SmartLSM, SmartMap, SmartUpdate, SmartView, SmartView Monitor,
SmartView Reporter, SmartView Status, SmartViewTracker, SofaWare, SSL Network Extender, UAM, User-to-Address Mapping, UserAuthority,
VPN-1, VPN-1 Accelerator Card, VPN-1 Edge, VPN-1 Pro, VPN-1 SecureClient, VPN-1 SecuRemote, VPN-1 SecureServer, VPN-1 VSX, Web
Intelligence, TrueVector, ZoneAlarm, Zone Alarm Pro, Zone Labs, the Zone Labs logo, AlertAdvisor, Cooperative Enforcement, IMsecure,
Policy Lifecycle Management, Zone Labs Integrity and Smarter Security are trade-marks or registered trademarks of Check Point Software
Technologies Ltd. or its affiliates. All other product names mentioned herein are trademarks or registered trademarks of their respective
owners. The products described in this document are protected by U.S. Patent No. 5,606,668, 5,835,726 and 6,496,935 and may be protected
by other U.S. Patents, foreign patents, or pending applications.

September 2, 2004 PN: 000000

Glossary
Machine Assembly Language: The actual computer language executed by a CPU. In the context
of high-level programming languages, such as C++, machine assembly language results from
taking a program written in the high-level programming language and running it through a compiler
for a given processor.

Disassembler: A tool that takes binary data and translates it into machine assembly language
based on a specific processor (i.e., Intel, SPARC, etc.). The results are the actual operational
instructions a processor would use execute the program (e.g., XOR, NOOP, etc.)

About Check Point Software Technologies
Check Point Software Technologies is the worldwide leader in securing the Internet. It is the confirmed
market leader of both the worldwide VPN and firewall markets. Through its Next Generation product
line, the company delivers a broad range of intelligent perimeter, internal and Web security solutions
that protect business communications and resources for corporate networks and applications, remote
employees, branch offices and partner extranets. The company’s Zone Labs (www.zonelabs.com)
division is one of the most trusted brands in Internet security, creating award-winning endpoint security
solutions that protect millions of PCs from hackers, spyware and data theft. Extending the power of the
Check Point solution is its Open Platform for Security (OPSEC), the industry’s framework and alliance
for integration and interoperability with “best-of-breed” solutions from over 350 leading companies.
Check Point solutions are sold, integrated and serviced by a network of more than 2,300 Check Point
partners in 92 countries.

